
Copy Semantics and
Move Semantics in C++

CMSC 240 Software Systems Development

Today – Copy/Move Semantics

• Copy Semantics

• In-class exercise

• Move Semantics

• In-class exercise

Today – Copy/Move Semantics

• Copy Semantics

• In-class exercise

• Move Semantics

• In-class exercise

Copy Semantics

Copy Semantics means “the meaning of copy”
• The rules for making copies of objects

What we want:

• After x is copied into y they are equivalent and independent

• Equivalence: x == y

• Independence: Modification to x does not cause modification to y

Object Passed by Value

When you pass by value, a copy of the actual parameter is made

(though you didn’t explicitly ask for one)!

Object Passed by Value
• For plain old data (POD) types, it is a similar situation

• Think of POD as a container of members
• (which may have varying types)

• The parameter receives a member-wise copy

Member-wise copying

• For built-in (int, float, char, etc.) and plain old data types, copying
is done member wise.
• It’s just a bit-by-bit copy into another location

• All good

• But for fully featured classes this can be problematic.

What happens if we
make a member-wise

copy of this
SimpleString object?

A Problem

• This can be bad
• Any operation performed on the characters member of one object

changes the other

A Problem

• This can be bad
• Any operation performed on the characters member of one object

changes the other

H e l l o , W o r l d \0

A Problem

• This can be dangerous!
• When one of the objects is destructed, characters is deleted. If the

remaining SimpleString tries to write to its buffer, there is undefined
behavior.

• Worse, when the remaining SimpleString is destructed, characters is
deleted again, causing a double free error.

Copy Semantics are intended
to avoid such situations

Copy Terminology

• Shallow Copy
• Copies only a pointer so that the two pointers now refer to the same

object.

0xffab1234 0xffab1234

88

p q

Copy Terminology

• Deep Copy
• Copies what a pointer points to so that the two pointers now refer to

distinct objects.

0xffab1234 0xffab5678

88

p q

77

Method 1: Copy Constructor

H e l l o , W o r l d \0

H e l l o , W o r l d \0

Code Demo

• We have not defined a copy assignment operator.

We Still Have a Problem

Method 2: Copy Assignment

Default Copy

• Often the compiler will generate default copies for construction
and assignment
• Copy construction or copy assignment on each member of the class

• Be extremely careful with this!
• Default is likely be wrong

• Code your own copy constructor and copy assignment operators!

Turn Off Copying
• Some objects should not be copied

• Any attempt to copy results in a compiler error

Today – Copy/Move Semantics

• Copy Semantics

• In-class exercise

• Move Semantics

• In-class exercise

Today – Copy/Move Semantics

• Copy Semantics

• In-class exercise

• Move Semantics

• In-class exercise

Move Semantics

• Copying can be time consuming and memory intensive,
especially if large amounts of data are involved

• It can be more efficient just to transfer ownership of resources
from one object to another

• Copying and destroying the original works but can be inefficient

Move Semantics

Move semantics are the rules for moving objects

• Requirements: After object y is moved into object x
• x is equivalent to the former value of y

• y is in a special state called the moved-from state
• Can only do two things with objects in this state: reassign or destruct

Value Categories

• Every expression in C++ has a type and value category
• Value category describes what kinds of operations are valid for the

expression

• Value categories:
• lvalue: any value that has a name

• rvalue: anything that is not an lvalue

Value Categories

• rvalue, lvalue arose from which side of = operator each originally
appeared
• Ex: int x = 50 (x is lvalue, 50 is rvalue)

• Not totally accurate: can have an lvalue on right side of =
• E.g., in copy assignment

lvalue rvalue

lvalue lvalue

lvalue and rvalue References

• So far, all references we’ve used have been lvalue references
• Denoted with a single &

• For example,

• However, function parameters can be rvalue references using &&

lvalue and rvalue References

std::move

• You can cast an lvalue reference to an rvalue reference using
std::move and adding the #include <utility> header

• Note you never actually move anything, you are only casting

std::move

Move Constructors

• Like a copy constructor, but takes an rvalue reference

• other is an rvalue reference so you can ”cannibalize” it

• Move constructor is designed to not throw an exception

Move Constructors

Move Assignment

• Like a copy assignment, but takes an rvalue reference

• And as with the move constructor, we designate it noexcept

Code Demo

Compiler-Generated Methods

• Five methods govern move and copy behavior:
1. The destructor

2. The copy constructor

3. The move constructor

4. The copy assignment operator

5. The move assignment operator

• Compiler can generate default implementations in some cases

• Bottom line: you should define all five

Today – Copy/Move Semantics

• Copy Semantics

• In-class exercise

• Move Semantics

• In-class exercise

	Slide 1: Copy Semantics and Move Semantics in C++
	Slide 2: Today – Copy/Move Semantics
	Slide 3: Today – Copy/Move Semantics
	Slide 4: Copy Semantics
	Slide 5: Object Passed by Value
	Slide 6: Object Passed by Value
	Slide 7: Member-wise copying
	Slide 8
	Slide 9: A Problem
	Slide 10: A Problem
	Slide 11: A Problem
	Slide 12
	Slide 13: Copy Terminology
	Slide 14: Copy Terminology
	Slide 15: Method 1: Copy Constructor
	Slide 16: Code Demo
	Slide 17: We Still Have a Problem
	Slide 18: Method 2: Copy Assignment
	Slide 19: Default Copy
	Slide 20: Turn Off Copying
	Slide 21: Today – Copy/Move Semantics
	Slide 22: Today – Copy/Move Semantics
	Slide 23: Move Semantics
	Slide 24: Move Semantics
	Slide 25: Value Categories
	Slide 26: Value Categories
	Slide 27: lvalue and rvalue References
	Slide 28: lvalue and rvalue References
	Slide 29: std::move
	Slide 30: std::move
	Slide 31: Move Constructors
	Slide 32: Move Constructors
	Slide 33: Move Assignment
	Slide 34
	Slide 35
	Slide 36: Code Demo
	Slide 37: Compiler-Generated Methods
	Slide 38: Today – Copy/Move Semantics

