CMSC 240 Software Systems Development

I

> ®np
s ‘.!,n.

N~
ket

o
e

v
o bl
W s
% y 4
o
34,
. .
I? ’
(%
P> 0
(’Q 4
ot
3 B ’
v 4 H
At
gy B
i
L
.
% -
. .
Syt »
v jo

Today — Build Pipeline

» Introduction to Build Pipelines
» Generating Documentation

» Static Analysis

RICHMOND

 Unit Testing

Today — Build Pipeline

» Introduction to Build Pipelines
» Generating Documentation

» Static Analysis

RICHMOND

 Unit Testing

Our Current Build Pipeline

Deploy
Executable

Compile

Our Current Build Pipeline

Deploy
Executable

Compile

webservice > M Makefile

1

~N OO O bW N

1
2

~N O U B W

main: main.cpp

g++ —lpthread main.cpp —0 main
c Lean:
rm —f main

More Useful Build Pipeline

Generate Static Code Compile &

Documentation Analysis unit Test Deploy

More Useful Build Pipeline

Generate Static Code Compile &

Documentation Analysis unit Test Deploy

Generating Documentation From Code

 Consistency & Accuracy
» Keeps documentation synchronized with code changes
* Reflects the true state of the system

» Efficiency & Time-Saving
« Reduces manual documentation effort
* Frees up developer time for core tasks

» Maintainability
 Simplifies updates as code evolves
« Facilitates knowledge transfer and onboarding

 Standardization
 Enforces uniform documentation practices
« Enhances code readability and team collaboration

Doxygen: Automated Documents for C++

* What is Doxygen?
» Tool for generating reference documentation from source code comments

» Key Features
« Supports multiple programming languages, including C++
« Generates documentation in HTML, LaTeX, RTF, and XML formats

 Benefits
 Streamlines the documentation process
» Ensures documentation consistency with the codebase

* Integration
» Easily integrates with coding environments and version control systems

 Supports collaboration by providing up-to-date code documentation

Doxygen: Automated Documents for C++

* Doxygen Overview

« A documentation generator for writing software reference documentation from
annotated source code

« Key Annotations
« @file: Describes the name and a brief description of the file
* Relass: Documents a class and provides a brief class description
@brief: A concise description of the following element
* @param: Documents one parameter of a function
@return: Describes what a function returns
@throw Or @exception: Describes what exceptions are thrown by a function

* How Do They Work?

« Doxygen scans the source code, parsing the annotations to generate the
corresponding documentation sections

Doxygen: Example

/ ¥k
@class SimpleMath
@brief A class that offers basic mathematical functions.

*
*
*
* This class can perform simple mathematical operations such as
* addition, subtraction, multiplication, and division.
*/
class SimpleMath
{
public:
/ ¥k
* @brief Adds two numbers.
* @param First number to add.
* @param b Second number to add.
* @return The sum of a and b.
X/
int add(int a, int b);

/%%
* @brief Subtracts one number from another.
* @param a Number to be subtracted from.
* @param b Number that is to subtract.
* @return The difference of a and b.
*/
int subtract(int a, int b);

Doxygen: Configuration File

doxyfile U X

lecture21 > doxy > doxyfile

1

-~ OO U BB W N

PROJECT_NAME = "SimpleMath"
INPUT = ./

RECURSIVE = YES
OUTPUT_DIRECTORY = ./docs
GENERATE_HTML = YES
GENERATE_LATEX = NO

Doxygen: Generating Docs

$ doxygen doxyfile

M Makefile U X

Add Document lecture21 > docgen > M Makefile
Generatlon 1 all: main docs

2
tO the 3 main: main.o SimpleMath.o
EBlJiI(j F)i I- 4 g++ main.o SimpleMath.o -o main
peline 5
6 main.o: main.cpp SimpleMath.h
7 g++ main.cpp -cC
8
9 SimpleMath.o: SimpleMath.cpp SimpleMath.h
10 g++ SimpleMath.cpp -c
11
12 docs: main.cpp SimpleMath.cpp SimpleMath.h
13 doxygen doxyfile
14
15 clean—-code:
16 rm —f main.o SimpleMath.o main
17
18 clean—-docs:
19 rm -r —f ./docs
20

N
=

clean: clean-code clean-docs

Public Member Functions | List of all members

SimpleMath Class
Reference

A class that offers basic mathematical functions. More...

#include <SimpleMath.h>

Public Member Functions

int add (int a, int b)
Adds two numbers. More...

int subtract (int a, int b)
Subtracts one number from another. More...

int multiply (int a, int b)
Multiplies two numbers. More...

double divide (int a, int b)
Divides one number by another. More...

Ask a question

Give it a try!

More Useful Build Pipeline

Generate Static Code Compile &

Documentation Analysis unit Test Deploy

Introduction to Static Code Analysis

« What is Static Code Analysis?
- A method of debugging by examining code without executing it

 Purpose of Static Code Analysis

 To detect code quality issues, security vulnerabilities, and coding standard
violations early in development

» Key Benefits
« Improves code quality and maintainability

« Identifies potential security risks
« Saves time and resources by catching issues before runtime

« How It Works
 Uses tools to analyze the source code for patterns of known issues

« Can be integrated into IDEs and continuous integration pipelines

Introduction to Static Code Analysis

 What is CPPCheck?

« An open-source static analysis tool for C and C++ code
 Designed to detect various kinds of bugs in your code

» Key Features
« Checks for memory leaks, mismatching allocation-deallocation, and more
 Detects undefined behavior and dangerous coding constructs

» Using CPPCheck
* Run it from the command line: cppcheck [options] [file(s)]

 Incorporate it into your build pipeline for regular analysis

#include <iostream=>
#include <vector>
using namespace std;

void printVector(vector<int>& v)

{
for (size t i = 0; i <= v.size(); ++1i)
{

* cout << v[i] << endl; // Potential out-of-bounds access

}

b

int main()

{

charx p = new char[10];

vector<int> numbers = {1, 2, 3, 4, 5};
printVector(numbers);

#delete p; // Should be 'delete[] p;' to match 'new[]"’
return 0;

}

Defects Not Found During Compile or Run

g++ —Wall main.cpp —0 main
./main

SUTHA WNPR&#H&H

Run Static Analysis With cppcheck

$ cppcheck *.cpp

Checking main.cpp ...
main.cpp:20:12: error: Mismatching allocation and deallocation: p [mismatchAllocDealloc]

delete p; // Should be 'delete[] p;' to match 'new[]’

main.cpp:15:15: note: Mismatching allocation and deallocation: p
charx p = new char[10];

Fal

main.cpp:20:12: note: Mismatching allocation and deallocation: p
delete p; // Should be 'deletel] p;' to match 'new[]’

main.cpp:9:18: error: When i==v.size(), vI[i] is out of bounds. [stlOutOfBounds]
cout << v[i] << endl; // Potential out-of-bounds access

A

Add Static M Makefile U X
AnaIYSiS tO the lecture21 > static > M Makefile

BLIIId Pipeline 1 all: main static—-analysis
2
3 main: main.o
4 g++ main.o -o main
5
6 main.o: main.cpp
7 g++ -Wall main.cpp -c
8
9 static—-analysis:
10 cppcheck *.cpp
11
12 c lean:
13 rm —f main.o main

[
N

Ask a question

Give it a try!

More Useful Build Pipeline

Generate Static Code Compile &

Documentation Analysis SATERTESE Deploy

The Two Approaches to Programming

* Approach #1

 “I wrote ALL of the code, but when I tried to compile and run it, nothing
seemed to work!”

* Approach #2
» Write a little code (e.g., a method or small class)
- Test it
» Write a little more code
- Test it
» Integrate the two verified pieces of code
- Test it

Introduction to Unit Testing

* What is Unit Testing?
* Unit testing is a software testing method where individual units of source code
are tested to determine if they are fit for use
» Key Characteristics

» Isolates the smallest parts of a program, (i.e. functions or methods), for testing
 Usually automated to run as part of the development process

 Objective
» To ensure that each unit operates correctly

« Importance in Software Development
 Catches bugs early in the development cycle

« Helps maintain and refactor code with confidence
« Vital for ensuring the reliability and quality of the final product

Types of Software Testing

 Unit Testing
» Testing individual components or functions

« Integration Testing
» Testing combined components to determine if they function together

 System Testing
 Testing a complete and integrated software system

Unit Testing Process

1.

Identify Units: Determine the smallest testable components of the software
to be tested

Write Test Cases: Create test cases that cover various scenarios and edge
cases for each unit

Execute Tests: Run the test cases and verify the actual output against the
expected output

Analyze Results: Identify failures, debug issues, and fix the failing units

Repeat and Automate; Continuously write and execute unit tests as part of
the development pipeline

Code Coverage

» Code coverage is a measure used to describe the degree to which
the source code of a program is executed when a particular test
suite runs

 Types of Coverage:
 Statement Coverage: each statement in the code is run at least once
« Branch Coverage: every branch from each decision point is executed
 Path Coverage: all the paths of execution are taken within each function
 Condition Coverage: all Boolean expressions evaluated both to true and false

 Best Practices: Strive for high coverage percentage

1. Write down all
the inputs that you
would provide to
completely test this
function.

2. Write the
corresponding

expected outputs.

#include <stdexcept>

bool isLeapYear(int year)

{

if (year <= 0)
{

throw std::invalid_argument("Year must be greater than 0.");

by

bool leapYear = false;

if (year % 4 == 0)

{
if (year % 100 '= Q)
{
leapYear = true;
}
else if (year % 400 == 0)
{
leapYear = true;
}
}

return leapYear;

Example: isLeapYear () function

_____Input | Expected Output

isLeapYear (1996) true
isLeapYear (2000) true
isLeapYear (1900) false
isLeapYear (2019) false
isLeapYear (0) invalid argument

isLeapYear (-100) invalid argument

Unit Testing With doctest

#define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
#include <doctest.h>
#include "leap.h"

TEST_CASE("Testing islLeapYear function")

{
CHECK(isLeapYear(2000) == true); // Divisible by 400
CHECK(isLeapYear(1996) == true); // Divisible by 4 but not by 100
CHECK(isLeapYear(1900) == false); // Divisible by 100 but not by 400
CHECK(isLeapYear(2019) == false); // Not divisible by 4

CHECK_THROWS_AS(islLeapYear(®), std::invalid_argument); // Invalid argument 0
CHECK_THROWS_AS(islLeapYear(-100), std::invalid_argument); // Invalid argument less than ©

Unit Testing With doctest

leapTest

TEST CASE:

leapTest

values:

leapTest.
values:

leapTest.
values:

leapTest.
values:

leapTest.

threw as

leapTest.

) threw

.Cpp:5:
Testing islLeapYear function

.cpp:7: SUCCESS: CHECK(isLeapYear(2000) true) is correct!

CHECK(true true)

CHECK(isLeapYear(1996) true) is correct!

true)

cpp:8: SUCCESS:
CHECK(true

cpp:9: SUCCESS: CHECK(isLeapYear(1900) false) is correct!

CHECK(false false)

cpp:10: SUCCESS: CHECK(isLeapYear(2019) == false) is correct!
CHECK(false false)

cpp:12: SUCCESS: CHECK_THROWS_AS(islLeapYear(@), std::invalid_argument)
expected!"Year must be greater than 0."

cpp:13: SUCCESS: CHECK_THROWS_AS(islLeapYear(-100), std::invalid_argument
as expected!"Year must be greater than 0."

[doctest] test cases: 1 | 1 passed | @ failed | @ skipped
[doctest] assertions: 6 | 6 passed | @ failed |
[doctest] Status: SUCCESS!

#include <stdexcept>

bool isLeapYear(int year)

{
if (year <= 0)
{
throw std::invalid_argument("Year must be greater than 0.");
}

bool leapYear = false;

if (year % 4 == 0)

{
if (year % 100 != 0)
{
leapYear = true;
r
else if (% 400 == 0)
{
leapYear = false;
}
+

return leapYear;

Unit Testing With doctest

leapTest.

cpp:5:

TEST CASE: Testing isLeapYear function

leapTest.
values:

leapTest.
values:

leapTest.
values:

leapTest.
values:

leapTest.
threw as

leapTest.
) threw

cpp:7: ERROR: CHECK(isLeapYear(2000) == true) is NOT correct!
CHECK(false == true)

cpp:8: SUCCESS: CHECK(isLeapYear(1996) == true) is correct!
CHECK(true == true)

cpp:9: SUCCESS: CHECK(islLeapYear(1900) == false) is correct!
CHECK(false == false)

cpp:10: SUCCESS: CHECK(islLeapYear(2019) == false) is correct!
CHECK(false == false)

cpp:12: SUCCESS: CHECK_THROWS_AS(islLeapYear(@), std::invalid_argument)
expected!"Year must be greater than 0."

cpp:13: SUCCESS: CHECK_THROWS_AS(islLeapYear(-100), std::invalid_argument
as expected!"Year must be greater than 0."

[doctest]
[doctest]
[doctest]

test cases: 1 | @ passed | 1 failed | @ skipped
assertions: 6 | 5 passed | 1 failed |
Status: FAILURE!

Add Unit
Testing to the
Build Pipeline

M Makefile U X

lecture21 > unit > leap > M Makefile

O 00~ Oy U bW N

N R R R R R R R R R R
S WO ~NOOWUL B WNROS

all: main run—-unit-tests

main: main.o leap.o
g++ main.o leap.o -0 main

main.o: main.cpp leap.h
g++ -Wall main.cpp —-c

leap.o: leap.cpp leap.h
g++ -Wall leap.cpp -c

leapTest: leapTest.cpp leap.cpp leap.h
g++ leapTest.cpp leap.o -0 leapTest

run—unit-tests: leapTest
./leapTest

clean:
rm —f leap.o main.o main leapTest

Test-Driven Development (TDD)

« What is TDD?

 Test-Driven Development is a software development approach where
tests are written before the code that is to be tested

* Red -2 Green - Refactor
- Red: Write a failing test
Write the minimal amount of code to make the test pass
- Refactor: Clean up the code while keeping the tests green

 Benefits: More maintainable code, encourages better design

Write This FIRST!

#define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
#include <doctest.h>
#include "leap.h"

TEST_CASE("Testing isLeapYear function")

{
CHECK(isLeapYear(2000) == true); // Divisible by 400
CHECK(isLeapYear(1996) == true); // Divisible by 4 but not by 100
CHECK(isLeapYear(1900) == false); // Divisible by 100 but not by 400
CHECK(isLeapYear(2019) == false); // Not divisible by 4

CHECK_THROWS_AS(isLeapYear(@), std::invalid_argument); // Invalid argument 0
CHECK_THROWS_AS(isLeapYear(-100), std::invalid_argument); // Invalid argument less than @

Ask a question

Give it a try!

	Slide 1: Build Pipelines
	Slide 2: Today – Build Pipeline
	Slide 3: Today – Build Pipeline
	Slide 4: Our Current Build Pipeline
	Slide 5: Our Current Build Pipeline
	Slide 6: More Useful Build Pipeline
	Slide 7: More Useful Build Pipeline
	Slide 8: Generating Documentation From Code
	Slide 9: Doxygen: Automated Documents for C++
	Slide 10: Doxygen: Automated Documents for C++
	Slide 11: Doxygen: Example
	Slide 12: Doxygen: Configuration File
	Slide 13: Doxygen: Generating Docs
	Slide 14: Add Document Generation to the Build Pipeline
	Slide 15
	Slide 16: Ask a question
	Slide 17: Give it a try!
	Slide 18: More Useful Build Pipeline
	Slide 19: Introduction to Static Code Analysis
	Slide 20: Introduction to Static Code Analysis
	Slide 21
	Slide 22: Defects Not Found During Compile or Run
	Slide 23: Run Static Analysis With cppcheck
	Slide 24: Add Static Analysis to the Build Pipeline
	Slide 25: Ask a question
	Slide 26: Give it a try!
	Slide 27: More Useful Build Pipeline
	Slide 28: The Two Approaches to Programming
	Slide 29: Introduction to Unit Testing
	Slide 30: Types of Software Testing
	Slide 31: Unit Testing Process
	Slide 32: Code Coverage
	Slide 33
	Slide 34: Example: isLeapYear() function
	Slide 35: Unit Testing With doctest
	Slide 36: Unit Testing With doctest
	Slide 37
	Slide 38: Unit Testing With doctest
	Slide 39: Add Unit Testing to the Build Pipeline
	Slide 40: Test-Driven Development (TDD)
	Slide 41: Write This FIRST!
	Slide 42: Ask a question
	Slide 43: Give it a try!

