— UNIVERSITY
RICHMO

CMSC 240 Software Systems

Development

o

Today

« Debugging your code
 Using the debugger

» In-class debugging exercise

Software Bug

Bug - an error, flaw, failure, or fault in a computer program that
produces an incorrect, unintended, or unexpected result

v, urv - 7

l‘o~ p< (Sl\'\e -:J'\csk)

1 €e

@e\w*?o ?&\r\;‘ F
\Mo’ﬂ) in (2 \QU\

“""V){ C\g+ ‘ : "-" o b cin oA
hF /530 B chrammnk S‘L&J P -{ “1 ; ‘\{q A

RICHMOND

Computer ploneer Grace HODDer

https://en.wikipedia.org/wiki/Grace_Hopper

What is Debugging?

« When you have written a program, it will have bugs

It will do something, but not what you expected

How do you find out what it actually does?

How do you correct it?

This process is called debugging

Stepping Through a Program

Carefully follow the program through the specified steps
Pretend you're the computer executing the program

Does the output match your expectations?

Need more information? Add a few debug output statements:

cout << "'x == << X <<

, Yy == " <<y << endl;

Beginnings and Ends

 Pay special attention to beginnings and ends
« of loops (for/while)
« of functions
« of classes (constructor/destructor)

* Did you initialize every variable?
« To a reasonable value

» Did the function get the right arguments?
 Did the function return the right value?

* Did you handle the first element correctly?
« The last element?

Be Guided By Output

“If you can’t see the bug, you’re looking in the wrong place”

» It's easy to be convinced that you know what the problem is and
stubbornly keep looking in the wrong place
 Don’t just guess
* Be guided by output

« Work forward through the code from a place you know is right
« What happens next? Why?

« Work backwards from some bad output
« How could that possibly happen?

Types of Debugging

Adding cout << | statements

» print the values of variables that to see what is going on
« print when you enter and exit functions

» print to find where you are in the code

» print to confirm that a class was properly initialized

» print useful diagnostic information

Adding a Debug Function

#define DEBUG_ON true

// Create a debug function to output only if debug is on.
void debug(string message)

{
if (DEBUG_ON)
{

cerr << message << endl;

}

Adding a Debug Function

// Calls the area function after reducing
// the length and width by frame size.
int framedArea(int length, int width)

{

=) debug("Begin framedArea");

int frameSize = 2;

// Do not catch exception here.
int result = area(length - frameSize, width - frameSize);

=P debug("Return from framedArea with result == " + to_string(result));

return result;

Redirect Debug Output

Since we used cerr in our debug function, another trick is to
redirect the cerr standard error stream (2) to a log file

Redirect standard output (cout)

$./helloworld > output.txt

Redirect standard error output (cerr)

RICHMOND

$./helloworld 2> debug_output.txt

Rubber Duck Debugging

https://en.wikipedia.org/wiki/Rubber duck debugging

» Talking through code with someone else
 If someone else is not available use a rubber duck

- Just by talking through your code, step-by-step, will help you
realize what is wrong with the code

https://en.wikipedia.org/wiki/Rubber_duck_debugging

Debugger

A debugger is a developer tool that attaches to your running program
and allows you to inspect your code

Setting a Breakpoint

—

Breakpoint

10
11
12
13
14
15
16
17
18
19
20
21
22

<< y << endl;

int main()
{
int x = 22; // Set a breakpoint here.
int y = 10;
Cout << "X — << X << u’ y ——
int sum = add(x, y);
cout << "sum == " << sum << endl;

return 0;

RICHMOND

EXTENSIONS Y O

Search Extensions in Marke...

v LOCAL - INSTALLED 12
» MICIoOSsoTt Thy

Remote - SSH O 9ms
Open any folder on a re...
£ Microsoft a0 €%

) Remote - SSH: Editing ...
\/ SSH: CS03 - INSTALLED ¢ 7

C/C++ 0 202ms
C/C++ IntelliSense, debu...
2 Microsoft §o3

C/C++ Extension Pack
@ Popular extensions for C...

v RECOMMENDED 3

D 5.7M % 4.5
Markdown linting and sty...

£ code [SSH: ¢s03]

= Extension: C/C++ X

C[C++ v1.17.5

Microsoft # microsoft.com < 53,200,

C/C+ + C/C++ IntelliSense, debugging, and code...

>< Disable |\ Uninstall |[v ¢33

Extension is enabled on 'SSH: cs03'

DETAILS FEATURE CONTRIBUTIONS CHANGELOG RUNTIME STATUS

Categories

C/C++ for Visual |
StUd|O Code Programming

Languages

Debuggers

Repository | Issues | Documen ~n |)
Formatters Linters

Samples
Snippets

X 8SH:cs03 P main O ®O0OA0 WO & 4 Live Share

o0 e £ code [SSH: cs03]

@ RUN AND DEBUG G+ debugl.cpp X

Vv RUN lecture11 > Debug > D1 > G+ debugl.cpp

):) int main()
Run and Debug 1 {
int 1 1727
2-9 To customize Run and Debug int w = 7;
create a launch.json file. |
&>

, cout << "Length == " << 1 << " Width == " << w << endl;
Show all automatic debug

configurations. int count = 0;

while (count < 10000)

Egj To learn more about (

launch.json, see Configuring
C/C++ debugging.

count++;

// Allocate memory on the heap.
intx arrayPointer = new int[1000];

Q;D arrayPointer[0] 10;

. arrayPointer[1] = 20;
arrayPointer[2] 30;
arrayPointer[3] = 40;

é?l v BREAKPOINTS
! @ All C++ Exceptions V4
X 8SH:cs03 Pmain & ®O0A0 WO & 4 Live Share Ln 34, Col 15 Spaces:4 UTF-8 LF {} C++ Linux 0

Select:

C/C++: g++ build and debug active file preLaunchTask: C/C++: g++ buil...

Detected Task (compiler: /usr/bin/g++)

£ code [SSH: cs03]

EXPLORER {} tasks.json X

v CODE [SSH: CS03] vscode > {} tasks.json > ...

v .vscode {

{} launch.json "tasks": [

{} settings.json "type": "cppbuild",

{} tasks.json "label": "C/C++: g++ build active file",
lecture1 "command": "/usr/bin/g++",
lecture2 "args": [
"-fdiagnostics—-color=always",
'-g",
""x.cpp",
lecture5 "-o",
lecture6 "${fileDirname}/${fileBasenameNoExtension}"
1,
"options": {
"cwd": "${fileDirname}"

lecture3

lectured

lecture7
lecture8
lecture8b 3

lecture9 "problemMatcher": [

lecture10 : "$gcc”
"group": {
RN "kind": “"build",

> Cout "isDefault": true

v D1 -
"detail": "Task generated by Debugger."

>
>
>
>
>
>
>
>
>
>
>

v lecturel1

debugl.cpp

> D2]

> OUT_LINE "version": "2.0.0"
b

¥ > TIMELINE

X 8SH:cs03 P mainC ®O0OA0 WO & 4 Live Share Spaces: 4 UTF-8 LF {} JSON with Comments

Debugger Controls

2>y T O 0
Continue Step Step Step Restart Stop

Over Into Out Of

—
RICHMOND

Debugger Demo

