
References & Heap

CMSC 240 Software Systems Development



Today

• Code Style

• References

• Heap (Free Store)

• Structs

• In-class exercise



Today

• Code Style

• References

• Heap (Free Store)

• Structs

• In-class exercise



Only the computer 
can read this



Code does not have 
correct spacing



Good style!



Variable names are 
not descriptive



Good 
variable 

names!



Good use of 
#define



Good use of 
comments!



• Code Quality (30 points)

• Readability (10 points)
• Code has meaningful variable and function names: ___/5

• Code is consistently formatted and indented: ___/5

• Modularity (10 points)
• Code is appropriately divided into functions: ___/5

• Each function has a single responsibility: ___/5

• Documentation (10 points)
• Code includes a header comment explaining the program's purpose: ___/3

• Each function has a comment explaining its purpose, inputs, and outputs: ___/5

• Inline comments explain non-obvious sections of the code: ___/2





Today

• Code Style

• References

• Heap (Free Store)

• Structs

• In-class exercise



A pointer is an object that 
holds an address value.



This new type is called 
an “int pointer” and is 

used to hold the address 
of an integer variable



& “address of”



The “address of” 
the integer num



17
var

ptr



* “contents of”



The “contents of” the pointer pointer

(i.e., the value stored at the address)

50
0x123

0x123

100



The “contents of” the pointer pointer

(i.e., the value stored at the address)



The “contents of” the 
pointer ptr

(i.e., the value stored 
at the address)

17



The “contents of” the pointer ptr

Assigned



A reference is an 
alternative name for an 
object.



This new type is called 
an “int reference” 

and is used as an 
alternative name for 
an integer variable

No need for the & 
“address of” operator here



Assigned

No need for *



17
No need for *



References

• An alternative name for an object

• Automatically dereferenced pointer
• They always point to the “contents of” the original object

• Immutable
• You cannot make a reference refer to a different object after initialization



Code Demo









It works!



• When you want to change the value of a variable to a value 
computed by a function, you have three choices:









Ask a question



Today

• Code Style

• References

• Heap (Free Store)

• Structs

• In-class exercise



Malan CS50



Malan CS50



Malan CS50



0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7

0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F

0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27

0x28 0x29 0x2A 0x2B 0x2C 0x2D 0x2E 0x2F

0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37

0x38 0x39 0x3A 0x3B 0x3C 0x3D 0x3E 0x3F

0x40 0x41 0x42 0x43 0x44 0x45 0x46 0x47

0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x4F



Operating 
System

User 
App1

User 
App2

Your C++ 
Program

User 
App3

All of 
main 

memory



Operating 
System

User 
App1

User 
App2

Your C++ 
Program

User 
App3

All of 
main 

memory

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7

0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F

0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27

0x28 0x29 0x2A 0x2B 0x2C 0x2D 0x2E 0x2F

0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37

0x38 0x39 0x3A 0x3B 0x3C 0x3D 0x3E 0x3F

0x40 0x41 0x42 0x43 0x44 0x45 0x46 0x47

0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x4F



Operating 
System

User 
App1

User 
App2

Your C++ 
Program

User 
App3

All of 
main 

memory



Operating 
System

User 
App1

User 
App2

Your C++ 
Program

User 
App3

machine code

All of 
main 

memory



Operating 
System

User 
App1

User 
App2

Your C++ 
Program

User 
App3

machine code

globals

All of 
main 

memory



Operating 
System

User 
App1

User 
App2

Your C++ 
Program

User 
App3

machine code

globals

heapAll of 
main 

memory



Operating 
System

User 
App1

User 
App2

Your C++ 
Program

User 
App3

machine code

globals

heap

stack

All of 
main 

memory





main

stack



main

swap

stack



main

stack



Operating 
System

User 
App1

User 
App2

Your C++ 
Program

User 
App3

machine code

globals

heap

stack

All of 
main 

memory



Heap Allocation

• We request memory to be allocated on the heap by using 
the new operator
• The new operator returns a pointer to the allocated memory

• A pointer value is the address of the first byte of the memory

• A pointer points to an object of a specified type

• A pointer does not know how many elements it points to





Heap Deallocation

• Since computer memory is limited, we should return memory to 
the heap once we are finished using it
• Forgetting to free memory is called a “memory leak” 

• The operator for returning memory to the heap is delete

• We apply delete to the pointer returned by new



Why Use the Heap?

• Dynamic Memory Allocation (Size and Lifetime Flexibility)

• Heap variables have a flexible size
• The heap allows you to allocate memory during runtime based on dynamic 

requirements.

• Heap variables persist until explicitly freed
• Unlike stack variables, whose lifetime is tied to the scope in which they’re declared, 

heap variables remain in memory until they are explicitly deallocated using delete.

• Useful when a variable needs to outlive the function where it was created.



Why Use the Heap?

• Avoiding Stack Limitations
• Stack size is limited: 

• The stack has a relatively small, fixed size (often a few megabytes). If you allocate 
large objects or arrays on the stack, you risk a stack overflow.



Why Use the Heap?

• Sharing Memory Between Scopes
• Heap memory is accessible from multiple scopes

• Variables allocated on the heap are not tied to any particular scope, making it easier 
to share memory between functions, objects, or threads.



Why Use the Heap?

• Dynamic Data Structures
• Data structures like linked lists, trees, graphs, and other dynamically 

growing data structures require memory allocation during runtime, which 
makes heap allocation essential.



Why Use the Heap?

• Object-Oriented Programming (Polymorphism)
• Heap allocation is used for polymorphic behavior

• In object-oriented programming, objects are often created on the heap to allow for 
runtime polymorphism.



When Not to Use the Heap

• Performance cost
• Allocating and deallocating memory on the heap is slower than on the 

stack because it requires interacting with the operating system or 
memory manager.

• Risk of memory leaks
• If you allocate memory on the heap and forget to free it using delete, 

you create a memory leak.

• Fragmentation 
• Over time, frequent heap allocations and deallocations can lead to 

memory fragmentation, reducing performance.



Code Demo



Ask a question



Today

• Code Style

• References

• Heap (Free Store)

• Structs

• In-class exercise



Structs

• A struct (short for "structure") is a user-defined data type 

• Groups together variables of different data types under a single name

• These variables inside a struct are called "members" 

• The members are separated by a semi-colon 





Use structs to pass 
around grouped 

information



Use structs to 
return grouped 

information







Today

• Code Style

• References

• Heap (Free Store)

• Structs

• In-class exercise



Credits

• Malan CS50
• Computer memory image and yellow grid

• Lecture materials

• Open-AI
• 3-D rendered garbage can image

• Unsplash.com
• Image of post office boxes

• PythonTutor.com
• Images of Stack and Heap


	Slide 1: References & Heap
	Slide 2: Today
	Slide 3: Today
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Today
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: References
	Slide 29: Code Demo
	Slide 30
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Ask a question
	Slide 40: Today
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57: Heap Allocation
	Slide 58
	Slide 59: Heap Deallocation
	Slide 60: Why Use the Heap?
	Slide 61: Why Use the Heap?
	Slide 62: Why Use the Heap?
	Slide 63: Why Use the Heap?
	Slide 64: Why Use the Heap?
	Slide 65: When Not to Use the Heap
	Slide 66: Code Demo
	Slide 67: Ask a question
	Slide 68: Today
	Slide 69: Structs
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75: Today
	Slide 76: Credits

