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Only the computer 
can read this



Code does not have 
correct spacing



Good style!



Variable names are 
not descriptive



Good 
variable 

names!



Good use of 
#define



Good use of 
comments!



• Code Quality (30 points)

• Readability (10 points)
• Code has meaningful variable and function names: ___/5

• Code is consistently formatted and indented: ___/5

• Modularity (10 points)
• Code is appropriately divided into functions: ___/5

• Each function has a single responsibility: ___/5

• Documentation (10 points)
• Code includes a header comment explaining the program's purpose: ___/3

• Each function has a comment explaining its purpose, inputs, and outputs: ___/5

• Inline comments explain non-obvious sections of the code: ___/2
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A pointer is an object that 
holds an address value.



This new type is called 
an “int pointer” and is 

used to hold the address 
of an integer variable



& “address of”



The “address of” 
the integer num
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var

ptr



* “contents of”



The “contents of” the pointer pointer

(i.e., the value stored at the address)

50
0x123

0x123

100



The “contents of” the pointer pointer

(i.e., the value stored at the address)



The “contents of” the 
pointer ptr

(i.e., the value stored 
at the address)

17



The “contents of” the pointer ptr

Assigned



A reference is an 
alternative name for an 
object.



This new type is called 
an “int reference” 

and is used as an 
alternative name for 
an integer variable

No need for the & 
“address of” operator here



Assigned

No need for *



17
No need for *



References

• An alternative name for an object

• Automatically dereferenced pointer
• They always point to the “contents of” the original object

• Immutable
• You cannot make a reference refer to a different object after initialization



Code Demo









It works!



• When you want to change the value of a variable to a value 
computed by a function, you have three choices:









Ask a question
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Malan CS50



Malan CS50



Malan CS50
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main

stack



main

swap

stack



main

stack
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Heap Allocation

• We request memory to be allocated on the heap by using 
the new operator
• The new operator returns a pointer to the allocated memory

• A pointer value is the address of the first byte of the memory

• A pointer points to an object of a specified type

• A pointer does not know how many elements it points to





Heap Deallocation

• Since computer memory is limited, we should return memory to 
the heap once we are finished using it
• Forgetting to free memory is called a “memory leak” 

• The operator for returning memory to the heap is delete

• We apply delete to the pointer returned by new



Why Use the Heap?

• Dynamic Memory Allocation (Size and Lifetime Flexibility)

• Heap variables have a flexible size
• The heap allows you to allocate memory during runtime based on dynamic 

requirements.

• Heap variables persist until explicitly freed
• Unlike stack variables, whose lifetime is tied to the scope in which they’re declared, 

heap variables remain in memory until they are explicitly deallocated using delete.

• Useful when a variable needs to outlive the function where it was created.



Why Use the Heap?

• Avoiding Stack Limitations
• Stack size is limited: 

• The stack has a relatively small, fixed size (often a few megabytes). If you allocate 
large objects or arrays on the stack, you risk a stack overflow.



Why Use the Heap?

• Sharing Memory Between Scopes
• Heap memory is accessible from multiple scopes

• Variables allocated on the heap are not tied to any particular scope, making it easier 
to share memory between functions, objects, or threads.



Why Use the Heap?

• Dynamic Data Structures
• Data structures like linked lists, trees, graphs, and other dynamically 

growing data structures require memory allocation during runtime, which 
makes heap allocation essential.



Why Use the Heap?

• Object-Oriented Programming (Polymorphism)
• Heap allocation is used for polymorphic behavior

• In object-oriented programming, objects are often created on the heap to allow for 
runtime polymorphism.



When Not to Use the Heap

• Performance cost
• Allocating and deallocating memory on the heap is slower than on the 

stack because it requires interacting with the operating system or 
memory manager.

• Risk of memory leaks
• If you allocate memory on the heap and forget to free it using delete, 

you create a memory leak.

• Fragmentation 
• Over time, frequent heap allocations and deallocations can lead to 

memory fragmentation, reducing performance.



Code Demo



Ask a question
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Structs

• A struct (short for "structure") is a user-defined data type 

• Groups together variables of different data types under a single name

• These variables inside a struct are called "members" 

• The members are separated by a semi-colon 





Use structs to pass 
around grouped 

information



Use structs to 
return grouped 

information
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Credits

• Malan CS50
• Computer memory image and yellow grid

• Lecture materials

• Open-AI
• 3-D rendered garbage can image

• Unsplash.com
• Image of post office boxes

• PythonTutor.com
• Images of Stack and Heap
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